7 research outputs found

    Morphological segmentation analysis and texture-based support vector machines classification on mice liver fibrosis microscopic images

    Get PDF
    Background To reduce the intensity of the work of doctors, pre-classification work needs to be issued. In this paper, a novel and related liver microscopic image classification analysis method is proposed. Objective For quantitative analysis, segmentation is carried out to extract the quantitative information of special organisms in the image for further diagnosis, lesion localization, learning and treating anatomical abnormalities and computer-guided surgery. Methods in the current work, entropy based features of microscopic fibrosis mice’ liver images were analyzed using fuzzy c-cluster, k-means and watershed algorithms based on distance transformations and gradient. A morphological segmentation based on a local threshold was deployed to determine the fibrosis areas of images. Results the segmented target region using the proposed method achieved high effective microscopy fibrosis images segmenting of mice liver in terms of the running time, dice ratio and precision. The image classification experiments were conducted using Gray Level Co-occurrence Matrix (GLCM). The best classification model derived from the established characteristics was GLCM which performed the highest accuracy of classification using a developed Support Vector Machine (SVM). The training model using 11 features was found to be as accurate when only trained by 8 GLCMs. Conclusion The research illustrated the proposed method is a new feasible research approach for microscopy mice liver image segmentation and classification using intelligent image analysis techniques. It is also reported that the average computational time of the proposed approach was only 2.335 seconds, which outperformed other segmentation algorithms with 0.8125 dice ratio and 0.5253 precision

    Efficient 3D Medical Image Segmentation Algorithm over a Secured Multimedia Network

    Get PDF
    Image segmentation has proved its importance and plays an important role in various domains such as health systems and satellite-oriented military applications. In this context, accuracy, image quality, and execution time deem to be the major issues to always consider. Although many techniques have been applied, and their experimental results have shown appealing achievements for 2D images in real-time environments, however, there is a lack of works about 3D image segmentation despite its importance in improving segmentation accuracy. Specifically, HMM was used in this domain. However, it suffers from the time complexity, which was updated using different accelerators. As it is important to have efficient 3D image segmentation, we propose in this paper a novel system for partitioning the 3D segmentation process across several distributed machines. The concepts behind distributed multimedia network segmentation were employed to accelerate the segmentation computational time of training Hidden Markov Model (HMMs). Furthermore, a secure transmission has been considered in this distributed environment and various bidirectional multimedia security algorithms have been applied. The contribution of this work lies in providing an efficient and secure algorithm for 3D image segmentation. Through a number of extensive experiments, it was proved that our proposed system is of comparable efficiency to the state of art methods in terms of segmentation accuracy, security and execution time
    corecore